Package: philentropy 0.9.0
philentropy: Similarity and Distance Quantification Between Probability Functions
Computes 46 optimized distance and similarity measures for comparing probability functions (Drost (2018) <doi:10.21105/joss.00765>). These comparisons between probability functions have their foundations in a broad range of scientific disciplines from mathematics to ecology. The aim of this package is to provide a core framework for clustering, classification, statistical inference, goodness-of-fit, non-parametric statistics, information theory, and machine learning tasks that are based on comparing univariate or multivariate probability functions.
Authors:
philentropy_0.9.0.tar.gz
philentropy_0.9.0.zip(r-4.5)philentropy_0.9.0.zip(r-4.4)philentropy_0.9.0.zip(r-4.3)
philentropy_0.9.0.tgz(r-4.4-x86_64)philentropy_0.9.0.tgz(r-4.4-arm64)philentropy_0.9.0.tgz(r-4.3-x86_64)philentropy_0.9.0.tgz(r-4.3-arm64)
philentropy_0.9.0.tar.gz(r-4.5-noble)philentropy_0.9.0.tar.gz(r-4.4-noble)
philentropy_0.9.0.tgz(r-4.4-emscripten)philentropy_0.9.0.tgz(r-4.3-emscripten)
philentropy.pdf |philentropy.html✨
philentropy/json (API)
NEWS
# Install 'philentropy' in R: |
install.packages('philentropy', repos = c('https://drostlab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/drostlab/philentropy/issues
distance-measuresdistance-quantificationinformation-theoryjensen-shannon-divergenceparametric-distributionssimilarity-measuresstatistics
Last updated 8 days agofrom:8859a12c0b. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win-x86_64 | OK | Nov 12 2024 |
R-4.5-linux-x86_64 | OK | Nov 12 2024 |
R-4.4-win-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-aarch64 | OK | Nov 12 2024 |
R-4.3-win-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-aarch64 | OK | Nov 12 2024 |
Exports:additive_symm_chi_sqavgbhattacharyyabinned.kernel.estcanberraCEchebyshevclark_sqcosine_distczekanowskidice_distdist_many_manydist_one_manydist_one_onedist.diversitydistancedivergence_sqestimate.probabilityeuclideanfidelitygetDistMethodsgJSDgowerHharmonic_mean_disthellingerinner_productintersection_distjaccardJEjeffreysjensen_differencejensen_shannonJSDk_divergenceKLkulczynski_dkullback_leibler_distancekumar_hassebrookkumar_johnsonlin.corlorentzianmanhattanmatusitaMIminkowskimotykaneyman_chi_sqpearson_chi_sqprob_symm_chi_sqruzickasoergelsorensensquared_chi_sqsquared_chordsquared_euclideantanejatanimototopsoewave_hedges
Dependencies:KernSmoothpoormanRcpp
Comparing many probability density functions
Rendered fromMany_Distances.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2021-08-20
Started: 2021-08-20
Distances
Rendered fromDistances.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2022-11-06
Started: 2015-03-26
Information Theory
Rendered fromInformation_Theory.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2022-11-06
Started: 2015-04-28
Introduction
Rendered fromIntroduction.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2022-11-06
Started: 2015-03-26