The philentropy
package has several mechanisms to calculate distances between
probability density functions. The main one is to use the the
distance()
function, which enables to compute 46 different
distances/similarities between probability density functions (see
?philentropy::distance
and a
companion vignette for details). Alternatively, it is possible to
call each distance/dissimilarity function directly. For example, the
euclidean()
function will compute the euclidean distance,
while jaccard
- the Jaccard distance. The complete list of
available distance measures are available with the
philentropy::getDistMethods()
function.
Both of the above approaches have their pros and cons. The
distance()
function is more flexible as it allows users to
use any distance measure and can return either a matrix
or
a dist
object. It also has several defensive programming
checks implemented, and thus, it is more appropriate for regular users.
Single distance functions, such as euclidean()
or
jaccard()
, can be, on the other hand, slightly faster as
they directly call the underlining C++ code.
Now, we introduce three new low-level functions that are
intermediaries between distance()
and single distance
functions. They are fairly flexible, allowing to use of any implemented
distance measure, but also usually faster than calling the
distance()
functions (especially, if it is needed to use
many times). These functions are:
dist_one_one()
- expects two vectors (probability
density functions), returns a single valuedist_one_many()
- expects one vector (a probability
density function) and one matrix (a set of probability density
functions), returns a vector of valuesdist_many_many()
- expects two matrices (two sets of
probability density functions), returns a matrix of valuesLet’s start testing them by attaching the philentropy package.
dist_one_one()
dist_one_one()
is a lower level equivalent to
distance()
. However, instead of accepting a numeric
data.frame
or matrix
, it expects two vectors
representing probability density functions. In this example, we create
two vectors, P
and Q
.
To calculate the euclidean distance between them we can use several
approaches - (a) build-in R dist()
function, (b)
philentropy::distance()
, (c)
philentropy::euclidean()
, or the new
dist_one_one()
.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
dist(rbind(P, Q), method = "euclidean"),
distance(rbind(P, Q), method = "euclidean", test.na = FALSE, mute.message = TRUE),
euclidean(P, Q, FALSE),
dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr
## dist(rbind(P, Q), method = "euclidean")
## distance(rbind(P, Q), method = "euclidean", test.na = FALSE, mute.message = TRUE)
## euclidean(P, Q, FALSE)
## dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
## min lq mean median uq max neval
## 13.174 13.9965 16.40060 14.5220 15.1030 174.956 100
## 19.316 20.0175 29.36207 20.5985 21.2040 855.084 100
## 1.163 1.2720 1.62433 1.4530 1.6580 15.458 100
## 1.843 2.0580 2.86564 2.2945 2.5045 53.300 100
All of them return the same, single value. However, as you can see in the benchmark above, some are more flexible, and others are faster.
dist_one_many()
The role of dist_one_many()
is to calculate distances
between one probability density function (in a form of a
vector
) and a set of probability density functions (as rows
in a matrix
).
Firstly, let’s create our example data.
P
is our input vector and M
is our input
matrix.
Distances between the P
vector and probability density
functions in M
can be calculated using several approaches.
For example, we could write a for
loop (adding a new code)
or just use the existing distance()
function and extract
only one row (or column) from the results. The
dist_one_many()
allows for this calculation directly as it
goes through each row in M
and calculates a given distance
measure between P
and values in this row.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1],
distance(rbind(P, M), method = "euclidean", test.na = FALSE, mute.message = TRUE)[1, ][-1],
dist_one_many(P, M, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr
## as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1]
## distance(rbind(P, M), method = "euclidean", test.na = FALSE, mute.message = TRUE)[1, ][-1]
## dist_one_many(P, M, method = "euclidean", testNA = FALSE)
## min lq mean median uq max neval
## 139.159 147.630 170.26379 160.1935 186.1270 333.121 100
## 15798.455 16305.129 17371.60482 17672.7980 18313.0510 19345.575 100
## 21.169 22.482 27.19098 25.9585 29.3695 93.744 100
The dist_one_many()
returns a vector of values. It is,
in this case, much faster than distance()
, and visibly
faster than dist()
while allowing for more possible
distance measures to be used.
dist_many_many()
dist_many_many()
calculates distances between two sets
of probability density functions (as rows in two matrix
objects).
Let’s create two new matrix
example data.
set.seed(2020-08-20)
M1 <- t(replicate(10, sample(1:10, size = 10) / 55))
M2 <- t(replicate(10, sample(1:10, size = 10) / 55))
M1
is our first input matrix and M2
is our
second input matrix. I am not aware of any function build-in R that
allows calculating distances between rows of two matrices, and thus, to
solve this problem, we can create our own -
many_dists()
…
many_dists = function(m1, m2){
r = matrix(nrow = nrow(m1), ncol = nrow(m2))
for (i in seq_len(nrow(m1))){
for (j in seq_len(nrow(m2))){
x = rbind(m1[i, ], m2[j, ])
r[i, j] = distance(x, method = "euclidean", mute.message = TRUE)
}
}
r
}
… and compare it to dist_many_many()
.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
many_dists(M1, M2),
dist_many_many(M1, M2, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr min lq
## many_dists(M1, M2) 1974.489 2047.050
## dist_many_many(M1, M2, method = "euclidean", testNA = FALSE) 32.530 35.682
## mean median uq max neval
## 2251.90401 2073.3635 2097.693 7984.547 100
## 39.25039 37.1095 38.963 64.480 100
Both many_dists()
and dist_many_many()
return a matrix. The above benchmark concludes that
dist_many_many()
is about 30 times faster than our custom
many_dists()
approach.