The philentropy
package has several mechanisms to calculate distances between
probability density functions. The main one is to use the the
distance()
function, which enables to compute 46 different
distances/similarities between probability density functions (see
?philentropy::distance
and a
companion vignette for details). Alternatively, it is possible to
call each distance/dissimilarity function directly. For example, the
euclidean()
function will compute the euclidean distance,
while jaccard
- the Jaccard distance. The complete list of
available distance measures are available with the
philentropy::getDistMethods()
function.
Both of the above approaches have their pros and cons. The
distance()
function is more flexible as it allows users to
use any distance measure and can return either a matrix
or
a dist
object. It also has several defensive programming
checks implemented, and thus, it is more appropriate for regular users.
Single distance functions, such as euclidean()
or
jaccard()
, can be, on the other hand, slightly faster as
they directly call the underlining C++ code.
Now, we introduce three new low-level functions that are
intermediaries between distance()
and single distance
functions. They are fairly flexible, allowing to use of any implemented
distance measure, but also usually faster than calling the
distance()
functions (especially, if it is needed to use
many times). These functions are:
dist_one_one()
- expects two vectors (probability
density functions), returns a single valuedist_one_many()
- expects one vector (a probability
density function) and one matrix (a set of probability density
functions), returns a vector of valuesdist_many_many()
- expects two matrices (two sets of
probability density functions), returns a matrix of valuesLet’s start testing them by attaching the philentropy package.
dist_one_one()
dist_one_one()
is a lower level equivalent to
distance()
. However, instead of accepting a numeric
data.frame
or matrix
, it expects two vectors
representing probability density functions. In this example, we create
two vectors, P
and Q
.
To calculate the euclidean distance between them we can use several
approaches - (a) build-in R dist()
function, (b)
philentropy::distance()
, (c)
philentropy::euclidean()
, or the new
dist_one_one()
.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
dist(rbind(P, Q), method = "euclidean"),
distance(rbind(P, Q), method = "euclidean", test.na = FALSE, mute.message = TRUE),
euclidean(P, Q, FALSE),
dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr
## dist(rbind(P, Q), method = "euclidean")
## distance(rbind(P, Q), method = "euclidean", test.na = FALSE, mute.message = TRUE)
## euclidean(P, Q, FALSE)
## dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
## min lq mean median uq max neval
## 12.022 12.8040 14.80715 13.515 14.0610 127.638 100
## 18.214 19.1205 28.33844 19.797 20.5840 837.911 100
## 1.142 1.3175 1.43100 1.412 1.5030 2.665 100
## 1.784 1.9185 2.67679 2.164 2.4095 28.663 100
All of them return the same, single value. However, as you can see in the benchmark above, some are more flexible, and others are faster.
dist_one_many()
The role of dist_one_many()
is to calculate distances
between one probability density function (in a form of a
vector
) and a set of probability density functions (as rows
in a matrix
).
Firstly, let’s create our example data.
P
is our input vector and M
is our input
matrix.
Distances between the P
vector and probability density
functions in M
can be calculated using several approaches.
For example, we could write a for
loop (adding a new code)
or just use the existing distance()
function and extract
only one row (or column) from the results. The
dist_one_many()
allows for this calculation directly as it
goes through each row in M
and calculates a given distance
measure between P
and values in this row.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1],
distance(rbind(P, M), method = "euclidean", test.na = FALSE, mute.message = TRUE)[1, ][-1],
dist_one_many(P, M, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr
## as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1]
## distance(rbind(P, M), method = "euclidean", test.na = FALSE, mute.message = TRUE)[1, ][-1]
## dist_one_many(P, M, method = "euclidean", testNA = FALSE)
## min lq mean median uq max neval
## 126.335 132.1670 149.91522 143.553 155.765 250.758 100
## 13829.329 14012.6810 14556.45437 14226.745 15141.419 20076.274 100
## 18.565 19.7465 22.27166 22.041 23.424 65.572 100
The dist_one_many()
returns a vector of values. It is,
in this case, much faster than distance()
, and visibly
faster than dist()
while allowing for more possible
distance measures to be used.
dist_many_many()
dist_many_many()
calculates distances between two sets
of probability density functions (as rows in two matrix
objects).
Let’s create two new matrix
example data.
set.seed(2020-08-20)
M1 <- t(replicate(10, sample(1:10, size = 10) / 55))
M2 <- t(replicate(10, sample(1:10, size = 10) / 55))
M1
is our first input matrix and M2
is our
second input matrix. I am not aware of any function build-in R that
allows calculating distances between rows of two matrices, and thus, to
solve this problem, we can create our own -
many_dists()
…
many_dists = function(m1, m2){
r = matrix(nrow = nrow(m1), ncol = nrow(m2))
for (i in seq_len(nrow(m1))){
for (j in seq_len(nrow(m2))){
x = rbind(m1[i, ], m2[j, ])
r[i, j] = distance(x, method = "euclidean", mute.message = TRUE)
}
}
r
}
… and compare it to dist_many_many()
.
# install.packages("microbenchmark")
microbenchmark::microbenchmark(
many_dists(M1, M2),
dist_many_many(M1, M2, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
## expr min lq
## many_dists(M1, M2) 1792.762 1851.993
## dist_many_many(M1, M2, method = "euclidean", testNA = FALSE) 27.992 30.201
## mean median uq max neval
## 2033.65047 1885.715 1942.180 7753.393 100
## 31.70363 31.068 32.446 62.557 100
Both many_dists()
and dist_many_many()
return a matrix. The above benchmark concludes that
dist_many_many()
is about 30 times faster than our custom
many_dists()
approach.