Comparing many probability density functions

The philentropy package has several mechanisms to calculate distances between probability density functions. The main one is to use the the distance() function, which enables to compute 46 different distances/similarities between probability density functions (see ?philentropy::distance and a companion vignette for details). Alternatively, it is possible to call each distance/dissimilarity function directly. For example, the euclidean() function will compute the euclidean distance, while jaccard - the Jaccard distance. The complete list of available distance measures are available with the philentropy::getDistMethods() function.

Both of the above approaches have their pros and cons. The distance() function is more flexible as it allows users to use any distance measure and can return either a matrix or a dist object. It also has several defensive programming checks implemented, and thus, it is more appropriate for regular users. Single distance functions, such as euclidean() or jaccard(), can be, on the other hand, slightly faster as they directly call the underlining C++ code.

Now, we introduce three new low-level functions that are intermediaries between distance() and single distance functions. They are fairly flexible, allowing to use of any implemented distance measure, but also usually faster than calling the distance() functions (especially, if it is needed to use many times). These functions are:

  • dist_one_one() - expects two vectors (probability density functions), returns a single value
  • dist_one_many() - expects one vector (a probability density function) and one matrix (a set of probability density functions), returns a vector of values
  • dist_many_many() - expects two matrices (two sets of probability density functions), returns a matrix of values

Let’s start testing them by attaching the philentropy package.

library(philentropy)

dist_one_one()

dist_one_one() is a lower level equivalent to distance(). However, instead of accepting a numeric data.frame or matrix, it expects two vectors representing probability density functions. In this example, we create two vectors, P and Q.

P <- 1:10 / sum(1:10)
Q <- 20:29 / sum(20:29)

To calculate the euclidean distance between them we can use several approaches - (a) build-in R dist() function, (b) philentropy::distance(), (c) philentropy::euclidean(), or the new dist_one_one().

# install.packages("microbenchmark")
microbenchmark::microbenchmark(
  dist(rbind(P, Q), method = "euclidean"),
  distance(rbind(P, Q), method = "euclidean", test.na = FALSE, mute.message = TRUE),
  euclidean(P, Q, FALSE),
  dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
##                                                                                    expr
##                                                 dist(rbind(P, Q), method = "euclidean")
##  distance(rbind(P, Q), method = "euclidean", test.na = FALSE,      mute.message = TRUE)
##                                                                  euclidean(P, Q, FALSE)
##                                dist_one_one(P, Q, method = "euclidean", testNA = FALSE)
##     min      lq     mean median      uq     max neval
##  12.022 12.8040 14.80715 13.515 14.0610 127.638   100
##  18.214 19.1205 28.33844 19.797 20.5840 837.911   100
##   1.142  1.3175  1.43100  1.412  1.5030   2.665   100
##   1.784  1.9185  2.67679  2.164  2.4095  28.663   100

All of them return the same, single value. However, as you can see in the benchmark above, some are more flexible, and others are faster.

dist_one_many()

The role of dist_one_many() is to calculate distances between one probability density function (in a form of a vector) and a set of probability density functions (as rows in a matrix).

Firstly, let’s create our example data.

set.seed(2020-08-20)
P <- 1:10 / sum(1:10)
M <- t(replicate(100, sample(1:10, size = 10) / 55))

P is our input vector and M is our input matrix.

Distances between the P vector and probability density functions in M can be calculated using several approaches. For example, we could write a for loop (adding a new code) or just use the existing distance() function and extract only one row (or column) from the results. The dist_one_many() allows for this calculation directly as it goes through each row in M and calculates a given distance measure between P and values in this row.

# install.packages("microbenchmark")
microbenchmark::microbenchmark(
  as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1],
  distance(rbind(P, M), method = "euclidean", test.na = FALSE, mute.message = TRUE)[1, ][-1],
  dist_one_many(P, M, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
##                                                                                             expr
##                                      as.matrix(dist(rbind(P, M), method = "euclidean"))[1, ][-1]
##  distance(rbind(P, M), method = "euclidean", test.na = FALSE,      mute.message = TRUE)[1, ][-1]
##                                        dist_one_many(P, M, method = "euclidean", testNA = FALSE)
##        min         lq        mean    median        uq       max neval
##    126.335   132.1670   149.91522   143.553   155.765   250.758   100
##  13829.329 14012.6810 14556.45437 14226.745 15141.419 20076.274   100
##     18.565    19.7465    22.27166    22.041    23.424    65.572   100

The dist_one_many() returns a vector of values. It is, in this case, much faster than distance(), and visibly faster than dist() while allowing for more possible distance measures to be used.

dist_many_many()

dist_many_many() calculates distances between two sets of probability density functions (as rows in two matrix objects).

Let’s create two new matrix example data.

set.seed(2020-08-20)
M1 <- t(replicate(10, sample(1:10, size = 10) / 55))
M2 <- t(replicate(10, sample(1:10, size = 10) / 55))

M1 is our first input matrix and M2 is our second input matrix. I am not aware of any function build-in R that allows calculating distances between rows of two matrices, and thus, to solve this problem, we can create our own - many_dists()

many_dists = function(m1, m2){
  r = matrix(nrow = nrow(m1), ncol = nrow(m2))
  for (i in seq_len(nrow(m1))){
    for (j in seq_len(nrow(m2))){
      x = rbind(m1[i, ], m2[j, ])
      r[i, j] = distance(x, method = "euclidean", mute.message = TRUE)
    }
  }
  r
}

… and compare it to dist_many_many().

# install.packages("microbenchmark")
microbenchmark::microbenchmark(
  many_dists(M1, M2),
  dist_many_many(M1, M2, method = "euclidean", testNA = FALSE)
)
## Unit: microseconds
##                                                          expr      min       lq
##                                            many_dists(M1, M2) 1792.762 1851.993
##  dist_many_many(M1, M2, method = "euclidean", testNA = FALSE)   27.992   30.201
##        mean   median       uq      max neval
##  2033.65047 1885.715 1942.180 7753.393   100
##    31.70363   31.068   32.446   62.557   100

Both many_dists()and dist_many_many() return a matrix. The above benchmark concludes that dist_many_many() is about 30 times faster than our custom many_dists() approach.